The Influence of Sex \& Temperament on Spatial Learning in Domestic Dogs

Rebecca Showalter, M.A., \& Robert Polewan, Ph.D.
Department of Psychology at Stephen F. Austin State University

INTRODUCTION	
Background research -The hippocampus is cited as often being responsible for spatial navigation (Pearce, Good, Jones, \& McGregor, 2004). -The sex of subject can impact the proficiency on a spatial learning task (Bimontea, Hydea, Hoplighta, \& Denenberga, 2000). \cdot Temperament may be associated with emotional reactivity (Davidson, 1998).	
Research purpose -The current study aimed to assess how sex and temperament may effect spatial learning in both male and female dogs, as measured by a spatial task, developed by the researchers, in a diamond shaped layout. -The spatial task was utilized to measure spatial learning and memory within subjects.	
Hypothesis - Male dogs would complete the task with more proficiency than female dogs. - Obedient temperament dogs would complete the task with more proficiency than dogs with an aggressive, fearful, or excitable temperament.	
Dependent Measures -Learning: Percent correct container choices -Working Memory (errors): Approaches to already baited containers \cdot Reference Memory (errors): Approaches to never baited containers	
	METHOD
Subjects $\cdot N=37($ Males $=16 ;$ Females $=21)$ -Ranged from $6 \mathrm{mo}-9.08$ yrs of age ($M=3.00, \mathrm{SD}=2.80$) \cdot All temperaments were observed (obedient $=9$, aggressive $=12$, fearful $=10$, excitable $=6$)	
Materials -Informed consent -Liability Waiver -Dog Demographics Serpell, 2003) -Dog treats -Campus map -iPad - Coding sheet -Test stimuli: six plastic food containers with three food containers baited with a dog treat (see Apparatus)	
All procedures were approved by the Stephen F. Austin State University Institutional Animal Care and Use Committee (IACUC) and Institutional Review Board (IRB) prior to testing.	

-Results of a mixed-model repeated measures (RM ANOVA) with learning as the dependent measure revealed a significant main effect of Trial, $F(5,145)=9.427, p<.001$
revealed a significant main effect of Trial, $F(5,145)=9.427, p<.001$.
\cdot Results of a mixed-model repeated measures (RM ANOVA) with learning as the dependent measure revealed a significant main effect of Temperament, $F(1,29)=4.099, p=.015$.
-Results of a mixed-model repeated measures (RM ANOVA) with working memory as the dependent measure revealed a significant main effect of Trial, $F(5,145)=5.561, p<.001$.
-No other significant differences were observed, however a trend was noticed for the Sex x Temperament interaction for female dogs.

DISCUSSION

Conclusions

-There was a significant difference in trial for learning and working memory, but not for reference memory
-There were no significant differences between male and female dogs on the task.
-Obedient and aggressive dogs had higher proficiency on the task than fearful dogs.

Implication

- Findings may better help training with service dogs (e.g., K-9). -Findings may help with the further development and validation of the \bullet Findin
task.

Limitations

-Ceiling effects.
-No systematic approach to ending trials (letting dogs finish exploring before removing them), which may have interfered with establishing reference memory.

- Odor cues
-Dog treat satiation
- Associative learning style; cues not being used.

Future Research

- Look into obtaining more representative sample size for ages in dogs. -Implement a true experiment design by using probe trial (e.g., take spatial cues away during trial 6).
-Look into recording dog size as a measure

REFERENCES

ACKNOWLEDGEMENTS

| Dr. Robert Polewan, Dr. Nathan Sparkman, Dr. Scott Drury, \& Dr. Ginger Kelso |
| :---: | :---: |
| Owners and their dogs |$|$

